Transporting the effect of an infectious disease intervention to a target population

Christopher B. Boyer

Department of Quantitative Health Sciences Cleveland Clinic Lerner College of Medicine Case Western Reserve University

June 11, 2025

Motivation

There is a desire to transport effects of infectious disease interventions from a source to a target population.

Examples:

- · Changes in contact behavior.
- Changes in population immunity.
- Changes to the pathogen (antigenic shift/drift).

Existing methods that standardize effects to the covariate distribution in the target population **are insufficient**.

Setup

Define:

- X is vector of baseline covariates,
- S is an indicator of the source (1: index trial, 0: target population sample),
- A is an indicator of treatment (1: treated, 0: untreated),
- E is exposure to the infectious agent (assume for now 1: exposed, 0: unexposed),
- *Y* is incident infection by the end of follow up (1: infected, 0: not infected).

Data Structure

We have access to:

• Data from the index trial or observational study, assumed to be realizations of

$$(X_i, S_i = 1, A_i, Y_i)$$

for $i = 1, ..., n_1$.

• Data from a random sample of the target population, assumed to be realizations of

$$(X_i,S_i=0)$$

for $i = 1, ..., n_0$.

Standard Transportability Analysis

- Target: $E[Y^a|S=0]$
- Assumptions:
 - (A1) Consistency
 - (A2) Exchangeability in trial
 - (A3) Positivity in trial
 - (A4) Exchangeability over S given X
 - (A5) Positivity in target
- Result: $E[Y^a|S=0] = E[E[Y|X, S=1, A=a]|S=0]$

The Problem of Interference

Standard assumption: No interference (SUTVA).¹

$$Y_i^{\mathbf{a}} = Y_i^{\mathbf{a}'} = Y_i$$
 when $A_i = A_i'$ for all individuals i.

• In infectious diseases: One person's treatment can affect others' outcomes.

$$Y_i^{\mathbf{a}} \neq Y_i^{\mathbf{a}'}$$
 when $A_i = A_i'$ for all individuals i.

¹Here, we consider a population of n units with vector of treatment allocations $\mathbf{A} \equiv (A_1, \dots, A_n)$ and possible realizations \mathbf{a} and \mathbf{a}' .

Cluster-Based Transport Under Partial Interference

Robertson, Steingrimsson, and Dahabreh (2022)

- Partition population into clusters: assume partial interference within but not between clusters.
- S=1: cluster randomized trial; S=0: target population of clusters
- Target: $\mathsf{E}[ar{Y}^a|S=0]$ where $\overline{Y}^a_j=rac{1}{N_i}\sum_{i=1}^{N_j}Y^a_{j,i}$ are cluster-level averages
- Assumptions:
 - (B1) Consistency of cluster-level outcomes
 - (B2) Exchangeability in cluster-randomized trial
 - (B3) Positivity in trial
 - (B4) Exchangeability over S given X
 - (B5) Positivity in target
- Result: $\mathsf{E}[\bar{Y}^a|S=0] = \mathsf{E}[\mathsf{E}[\bar{Y}|\mathbf{X},A=a,S=1] \mid S=0]$

Post-Baseline Exposure Threatens Assumptions

- Participation may alter contact behavior.
- Target and trial may differ in contact patterns.

Effects of participation on exposure

Different contact patterns in source and target

An Alternative: Per-Exposure Effects²

- Jointly intervene on A and E.
- Assumes $Y^{a,e} = Y$ if assigned $(A_i, E_i) = (a, e)$.
- Not subject to interference due to infection/contagion

²O'Hagan, Lipsitch, and Hernán 2014

Intervening on exposure removes interference

Intervening on exposure removes interference

A simplified causal model under joint intervention

Example: Human Challenge Trials

Efficacy of FLU-v, a broad-spectrum influenza vaccine, in a randomized phase IIb human influenza challenge study

Olga Pleguezuelos, Emma James, Ana Fernandez, Victor Lopes, Luz Angela Rosas, Adriana Cervantes-Medina, Jason Cleath, Kristina Edwards, Dana Neitzey, Wenjuan Gu, Sally Hunsberger, Jeffery K. Taubenberger, Gregory Stoloff & Matthew J. Memoli ⊠

```
npj Vaccines 5, Article number: 22 (2020) | Cite this article 9762 Accesses | 52 Citations | 84 Altmetric | Metrics
```

Abstract

FLU-v, developed by PepTcell (SEEK), is a peptide vaccine aiming to provide a broadly protective cellular immune response against influenza A and B. A randomized, double-blind, placebo-controlled, single-center, phase lib efficacy and safety trial was conducted. One hundred and fifty-three healthy individuals 18–55 years of age were randomized to receive one or two doses of adjuvanted FLU-v or adjuvanted placebo subcutaneously on days –43 and –22, prior to intranasal challenge on day 0 with the A/California/04/2009/H1N1 human influenza A challenge virus. The primary objective of the study was to identify a reduction in mild to moderate influenza disease (MMID) defined as the presence of viral shedding and clinical influenza symptoms. Single-dose adjuvanted FLU-v recipients (n=40) were significantly less likely to develop MMID after challenge vs placebo (n=42) (32.5% vs 54.8% ρ =0.035). FLU-v should continue to be evaluated and cellular immunity explored further as a possible important correlate of protection against influenza.

Transporting Effects from Human Challenge Trials

- S = 1: human challenge trial³; S = 0: target population
- Target: $E[Y^{a,e=1}|S=0]$.
- Assumptions:
 - (C1) Consistency under $E_i = 1$ and $A_i = a$
 - (C2) Exchangeability of A and E in challenge trial
 - (C3) Positivity in challenge trial
 - (C4) Exchangeability over S
 - (C5) Positivity in target
- Result: $E[Y^{a,e=1}|S=0] = E[E[Y|X, S=1, A=a, E=1]|S=0]$

³Now data structure for human challenge trial is $(X_i, S_i = 1, A_i, E_i = 1, Y_i)$ for $i = 1, ..., n_1$

Link to Infectious Disease Modeling

- Define stochastic allocation $g(\mathbf{a}) = \Pr^{\dagger}[\mathbf{A} = \mathbf{a}|X]$ and post-treatment exposure sequence $g(\mathbf{e}) = \Pr^{\dagger}[\mathbf{E} = \mathbf{e}|X, \mathbf{A} = \mathbf{a}]$.
- For a population of N units, an Individual-Based Model simulates:

$$\begin{split} \mathsf{E}[Y^{g(\mathbf{a}),g(\mathbf{e})}|S=0] = \\ \sum_{\mathbf{a}\in\mathcal{A}(n)} \sum_{\mathbf{e}\in\mathcal{E}(n)} \sum_{i=1}^{N} \mathsf{E}[Y^{a_i,e_i}|X,S=0] \, \mathsf{Pr}^{\dagger}[\mathbf{E}=\mathbf{e}|X,\mathbf{A}=\mathbf{a}] \, \mathsf{Pr}^{\dagger}[\mathbf{A}=\mathbf{a}|X] \end{split}$$

• In theory, equals $E[Y^{g(a)}|S=0]$ when

$$\Pr^{\dagger}[\mathbf{E} = \mathbf{e}|X, \mathbf{A} = \mathbf{a}] = \Pr[\mathbf{E}^{\mathbf{a}} = \mathbf{e}|X, \mathbf{A} = \mathbf{a}]$$

Alternative: Stensrud and Smith (2023)

- Trial: A randomized and placebo-controlled, E natural (unmeasured).
- Target: $ECE = \frac{E[Y^{a=1,e=1}|E=1]}{E[Y^{a=0,e=1}|E=1]}$.
- Assumptions:
 - (D1) Consistency under $E_i = 1$ and $A_i = a$
 - (D2) Exchangeability of A in placebo-controlled trial
 - (D3) Positivity in placebo-controlled trial
 - (D4) Exposure necessity for infection. I.e., $E_i = 0 \implies Y_i = 0$.
 - (D5) No effect of assignment on exposure. I.e., $E_i^{a=1} = E_i^{a=0}$

• Result:
$$\frac{\mathsf{E}[Y^{a=1,e=1}|E=1]}{\mathsf{E}[Y^{a=0,e=1}|E=1]} = \frac{\mathsf{E}[Y|A=1]}{\mathsf{E}[Y|A=0]}$$

Transportability of conditional ECE

- S=1: placebo controlled trial; S=0: target population sample
- Target: $E[Y^{a,e=1}|S=0]$.
- Assumptions:
 - (D6) Exchangeability of **relative effects** over S
 - (D7) Positivity in target
 - (D8) Unavailability of treatment in target population
- Result:

$$\mathsf{E}[Y^{a=1,e=1}|S=0] = \mathsf{E}\left[\frac{\mathsf{E}[Y|X,S=1,A=1]}{\mathsf{E}[Y|X,S=1,A=0]}\,\mathsf{E}[Y|X,S=0]\right]$$

Summary

- Standard transportability fails under interference.
- Cluster-level estimands possible under partial interference.
- Per-exposure effects may be more transportable.
- Requires different assumptions, data (e.g., challenge or contact studies).

Collaborators

Juan Gago, Issa Dahabreh, Matts Stensrud, and Marc Lipsitch

Slide deck

https://christopherbboyer.com/talks

Funding

National Institutes of Health (U01CA261277)

Questions?

Thank you!

References

- O'Hagan, Justin J., Marc Lipsitch, and Miguel A. Hernán (2014). "Estimating the Per-Exposure Effect of Infectious Disease Interventions". In: *Epidemiology* 25.1, p. 134.
- Robertson, Sarah E., Jon A. Steingrimsson, and Issa J. Dahabreh (2022). *Analyzing Cluster Randomized Trials Designed to Support Generalizable Inferences*. URL: http://arxiv.org/abs/2204.02872. Pre-published.
- Stensrud, Mats J. and Louisa Smith (2023). "Identification of Vaccine Effects When Exposure Status Is Unknown". In: *Epidemiology* 34.2, p. 216.