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A common clinical science task
Predicting a patient’s future health status based on their current state and medical
history. E.g.,

=⇒ What is a patient’s 10-year risk of cardiovascular disease (Yi ) based on their
demographics and current blood pressure and lipid levels (X ∗)?

We assume this is well approximated by the probability of the outcome among
some reference class composed of those with same/similar X ∗, i.e.

Yi ∼ f (Y |X ∗)

and therefore amenable to statistical modeling of the form:

E[Y |X ∗] = g(X ∗;β)
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Clinical prediction modeling

Paradigm:

1. Collect data from a sample of patients.

2. Train a model for the prediction estimand
based on available clinical inputs.

3. Evaluate model performance in an
independent sample.

4. Apply model prospectively to new
patients.

5. Monitor model performance over time
and in new settings.
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There’s a model for that...
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What is wrong with the conventional approach?

Conventional (hereafter “factual”) prediction methods have a lot to offer:

• A large and mature set of methods, based on traditional regression or more
flexible (but data hungry) machine learning approaches.

• Framework that focuses on agnostic evaluation of model performance rather
than whether the model is “correct”.

Bold claim: often these models are applied as sophisticated answers to the wrong
question.
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A more useful input to clinical decision making

Many actual use cases involve “what if” questions about predicted states under
hypothetical interventions (hereafter “counterfactual” prediction).

Case 1: Decision support

What would the patient’s 10-year risk of cardiovascular disease be if...
=⇒ they start statins today?
=⇒ they start statins once they have two successive visits with LDL > 190 mg/dl?
=⇒ they start lifestyle interventions first and then statins if LDL > 160 mg/dl?
=⇒ they never start statins?
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A more useful input to clinical decision making

Case 2: Changes in treatment patterns

E.g., a model trained when 5% of patients receive treatment after baseline is now
being used in a setting where 60% recieve treatment due to changes in treatment
guidelines.

Case 3: Removing pernicious influences

E.g., a model that targets the risk of death in the absence of surgery is trained in
an observational setting where some of the patients ultimately received surgery.
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Our contribution

• How to estimate (build models for) these counterfactual outcomes using data
from an observational study or randomized trial (or both)?

• How to evaluate these models given that the outcome may not be fully
observed?

• How to allow for effective separation of prediction and causal inference tasks?

• What are the conditions under which all of this works and what can we do if
they do not hold?
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A framework for counterfactual prediction

1. What is the clinical decision to be made?

2. Study design and sampling

3. Causal model and estimand

4. Identifiability

5. Estimation and inference

6. Performance evaluation

7. Sensitivity analysis

8. Communication and dissemination
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(1) Clinical decision

Example:

For a patient admitted to the hospital with characteristics X ∗, what is the 14-day
risk of venous thromboembolism if they receive heparin prophylaxis?

Questions:
• How is prophylaxis defined (dosage, length, route)?

• How to handle death (competing risk, composite)?

• Should we include risk of bleeding?
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(2) Study design and sampling

We have data O from n participants for model development where

O = {(Xi ,Ai ,Yi ,Di) : i = 1, . . . ,n}

and we define
• X : vector of covariates measured at baseline.
• A : a binary indicator of treatment initiation post baseline.
• Y : a clinical outcome (here assumed to be binary).
• D : a split indicator, where D = 1 is test and D = 0 is training.

Note: X here includes possible confounders L as well as predictors of outcome P
that are not confounders, i.e. Xi = (Li ,Pi).
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(3) Causal model and estimand

Let Y a be the potential outcome under an intervention that sets A to a ∈ A.

Goal: build a model ga(X ∗) for the conditional expectation of the potential outcome
in the target population, i.e.

ga(X ∗) = E[Y a|X ∗ = x∗],

where X ∗ is a subset of all covariates X to allow for separation between covariates
for prediction and those necessary for causal identification.

Note: for now, we assume that our data O are sampled directly from the target
population.
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(4) Identifiability conditions

To identify our counterfactual prediction estimand, we require the following
identifiability assumptions:

A1. Consistency. If A = a, then Y a = Y

A2. Conditional exchangeability. Y a ⊥⊥ A | X

A3. Positivity. For all x with positive density, i.e. fX (x) > 0, Pr[A = a | X = x ] > 0

Note: we also assume that, by design, the train/test split is random such that

(Y ,A,X ) ⊥⊥ D
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(4) Identifiability conditions

L A Y

U P

Figure: Causal directed acyclic graph showing law of observed data where identifiability
conditions hold.
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(5) Estimation and inference
Under the conditions above E[Y a|X ∗] is identified by

ga(X ∗) ≡ E[E[Y | X ,A = a,D = 0] | X ∗,D = 0] (1)

or, equivalently, using an inverse probability weighted expression

ga(X ∗) = E

[
I(A = a)

Pr[A = a | X ,D = 0]
Y
∣∣∣X ∗,D = 0

]
(2)

The two expressions for ga(X ∗) suggest two possible approaches for developing a
model for counterfactual prediction from the training data.
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(5) Estimation and inference

Approach 1: Outcome modeling

1. Subset to participants with A = a in the training data and fit a model ga(X ) for
the observed Y conditional X , i.e. E[Y |X ,A = a,D = 0] = ga(X ).

2. Marginalize (standardize) over the covariates in X that are not in X ∗. When
the dimension of X ∗ is small, this can be done nonparametrically, otherwise, a
second step is needed, either:

Option 1. Model the estimated ĝa(X ) as a function of X ∗, i.e. E[ĝa(X )|X ∗,D = 0] = ga(X ∗).

Option 2. Model the conditional density of X given X ∗, i.e. f (X |X ∗,D = 0) = h(X ∗), and
generate predictions from

∫
ga(x)h(x∗)dx .
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(5) Estimation and inference

Approach 2: Inverse probability weighting

1. For each individual, create weights W (a) equal to the probability of receiving
treatment level A = a conditional on covariates X necessary to ensure
exchangeability, i.e., sample analogs of

W (a) =
I(A = a)

Pr[A = a | X ,D = 0]

2. Fit model g(X ∗) using weighted optimization based on W (a), for instance via
weighted maximum likelihood.
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(6) Performance evaluation

To evaluate performance, one typically chooses a performance statistic, ψ, that
compares model predictions with the observed outcome in a hold out dataset:

• E.g., mean squared error, c-statistic, calibration curve, L1 loss, etc.

The problem: the potential outcome Y a is not fully “observed”, e.g. we could
define a counterfactual MSE

ψ(a) ≡ E[(Y a − ĝ(X ∗))2]

but we don’t have Y a for everyone

=⇒ Nonetheless, under certain assumptions, ψ(a) may still be identified from the
observed data!
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(6) Performance evaluation
The counterfactual MSE ψ(a) is identifiable under A1-A3 using data from the test
set through the expression

ψ(a) ≡ E
[
E[(Y − ĝ(X ∗))2 | X ,A = a,D = 1] | D = 1

]
(3)

or, equivalently, using an inverse probability weighted expression,

ψ(a) = E

[
I(A = a)

Pr[A = a | X ,D = 1]
(Y − ĝ(X ∗))2 | D = 1

]
(4)

regardless of whether the model ĝ(X ∗) is correctly specified.
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(6) Performance evaluation
Using sample analogs for expression 3, we obtain the conditional loss estimator

ψ̂CL =
1

ntest

n∑
i=1

I(Di = 1)ĥa(Xi)

where ĥa(X ) is an estimator for E [(Y − ĝ(X ∗))2 | X ,A = a,D = 1].

Steps:

1. Subset to those with A = a in the test set.

2. Estimate a model for the outcome (Y − ĝ(X ∗))2 conditional on full X using
either statistical or machine learning model.

3. Use the model to predict outcome under A = a for everyone in the test set,
take the sample average.
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(6) Performance evaluation
Using sample analogs for expression 4, we obtain the inverse probability
weighting estimator

ψ̂IPW =
1

ntest

n∑
i=1

I(Ai = a,Di = 1)
êa(Xi)

(Y − ĝ(X ∗))2

where êa(X ) is an estimator for Pr[A = a | X ,D = 1].
Steps:

1. Estimate a model for the probability of treatment in the test set, i.e.
ea(X ) = Pr[A = a | X ,D = 1].

2. Form inverse probability weights W (a) =
I(A = a)
ea(X )

3. Calculate the weighted mean of (Y − ĝ(X ∗))2 in the test set using weights
from previous step.
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where êa(X ) is an estimator for Pr[A = a | X ,D = 1].
Steps:

1. Estimate a model for the probability of treatment in the test set, i.e.
ea(X ) = Pr[A = a | X ,D = 1].

2. Form inverse probability weights W (a) =
I(A = a)
ea(X )

3. Calculate the weighted mean of (Y − ĝ(X ∗))2 in the test set using weights
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(6) Performance evaluation

We can also construct the doubly-robust estimator

ψ̂DR =
1

ntest

n∑
i=1

I(Di = 1)
[
ĥa(Xi) +

I(Ai = a)
êa(Xi)

{
(Y − ĝ(X ∗))2 − ĥa(X )

}]
which combines models for the conditional loss and the probability of treatment.

=⇒ The doubly-robust estimator will be consistent if either one of ha(X ) or ea(X )

(or both) is correctly specified!

It also permits the use of nonparameteric or machine learning estimators that
converge at rate less than

√
n due to product of the errors in empirical process

term.
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(7) Sensitivity analysis

Exponential tilt model:

f (Y a = y | X ) ∝ eηq(y)f (Y = y | X )

Steps:

1. Specify grid of η and function
q(·) based on subject matter
knowledge.

2. Re-estimate model or
performance statistic under
each η.
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(8) Communication and dissemination

How do we actually communicate/deploy these models?

Approach 1: Outcome modeling

=⇒ when using two stage estimation (option 1) report the coefficients from
second-stage pseudo-outcome regression, i.e. E[ĝa(X )|X ∗,D = 0] = ga(X ∗).

=⇒ when modeling the density (option 2) evaluate the integral for a grid of X ∗

values.

Approach 2: Inverse probability weighting

=⇒ report the coefficients from the weighted regression.

If using black-box approaches (e.g. neural nets, random forests, etc) you can still
deploy as you would previously.
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Empirical example

MESA = Multi-Ethnic Study of Atherosclerosis

Longitudinal cohort of 6,814 participants aged 45 to 84 from six communities and
one of the validation datasets for the development of the pooled cohort equations.

Outcome: 10-year risk of ASCVD

Intervention: withhold statins over the follow up period (A = 0).
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Empirical example

Prediction models, g(X ∗):

• logit = main effects logistic regression (factual)

• IPW = logistic regression for treatment initiation + weighted main effects
logistic regression (counterfactual)

Predictors (X ∗): age, sex, smoking status, diabetes history, systolic blood
pressure, anti-hypertensive medication use and total and HDL serum cholesterol
levels.

Covariates (X ): baseline demographics (12), risk factors (19), and medication use
(6)
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Empirical example: do we think identification is credible?

Table: Intention-to-treat and per protocol effects of statin therapy in emulation compared to
benchmark trial.

5-year ASCVD 10-year ASCVD

HR 95% CI HR 95% CI

Target Trial Emulation: MESA
ITT 0.79 (0.65, 0.93) 0.70 (0.56, 0.88)
Per protocol 0.68 (0.48, 0.94) 0.60 (0.39, 0.92)

Benchmark Trial: HPS
ITT 0.76 (0.72, 0.81)

HR = Hazard Ratio, CI = Confidence Interval

26 of 45



Empirical example: model fit

Factual (Logit) Counterfactual (IPW)

Characteristic (X ∗) OR 95% CI p-value OR 95% CI p-value

age 1.27 (1.18, 1.37) <0.001 1.20 (1.11, 1.30) <0.001
sex 1.64 (1.27, 2.13) <0.001 1.59 (1.21, 2.11) 0.001
smoker 1.86 (1.41, 2.46) <0.001 1.62 (1.19, 2.16) 0.002
diabetes 1.28 (1.00, 1.63) 0.051 1.52 (1.17, 1.98) 0.002
sbp 1.25 (1.15, 1.36) <0.001 1.27 (1.16, 1.39) <0.001
hdl 0.81 (0.73, 0.89) <0.001 0.75 (0.67, 0.84) <0.001
chol 1.03 (1.00, 1.06) 0.034 1.09 (1.06, 1.13) <0.001
hyp meds. 1.35 (1.04, 1.74) 0.025 1.57 (1.16, 2.11) 0.003
sbp × hyp meds 0.83 (0.75, 0.93) 0.002 0.88 (0.78, 0.99) 0.039

OR = Odds Ratio, CI = Confidence Interval
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Empirical example: model performance

Performance statistics (ψ): MSE, AUC

Estimators (ψ̂):
• CL = main effects logistic regression for ha(X )

• IPW = main effects logistic regression for ea(X )

• DR = combine ha(X ) + ea(X )

Covariates (X ): same as before
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Empirical example: model performance
MSE AUC

Estimator Logit IPW Logit IPW

Naı̈ve 0.069 0.072 0.710 0.708
(0.003) (0.003) (0.013) (0.014)

CL 0.086 0.085 0.719 0.727
(0.005) (0.004) (0.015) (0.015)

IPW 0.109 0.099 0.753 0.778
(0.013) (0.009) (0.025) (0.029)

DR 0.090 0.087 0.740 0.751
(0.006) (0.005) (0.023) (0.023)

The columns refer to the posited prediction model.
Standard error estimates are shown in parentheses
obtained via 1000 bootstrap replicates.
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What is the clinical significance?
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An alternative approach: transporting from a trial

In many cases, we may suspect that the conditional exchangeability assumption is
violated in an observational study (i.e. there’s likely unmeasured confounding).

Alternative: use data from a trial in which A is randomized.

However, the trial setting will generally differ from the target setting where the
model is applied.
=⇒ E.g., due to eligibility, location, participation, blinding, treatment delivery, etc.

Our contribution: methods and identifiability criteria for “transporting” a
counterfactual prediction model from a trial to the target population and evaluating
its performance.
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(2) Study design and sampling
We have data O1 from n1 participants in a trial where

O1 = {(Si = 1,Xi ,Ai ,Yi ,Di) : i = 1, . . . ,n1}

We also have covariate data O0 from n0 participants in the target population
where

O0 = {(Si = 0,Xi ,Di) : i = 1, . . . ,n0}

We define X , A, Y , and D as previously and we have
• S : an indicator of data source, where S = 1 is trial and S = 0 is target

population.
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(2) Study design and sampling

Target population sample (O0) :

ID X S A Y
1 15.2 0 – –

2 0.5 0 – –

3 4.7 0 – –




+

Trial sample (O1) :

ID X S A Y
4 2.3 1 1 10
5 14.2 1 0 20
6 8.9 1 1 30
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(3) Causal model and estimand

Our goal is now to “transport” a model ga(X ∗), that is, to target the conditional
expectation of the counterfactual outcome in the target population

E[Y a|X ∗ = x∗,S = 0]

under the hypothetical intervention A = a.

As before, X ∗ is a subset of all covariates X to allow for separation between
covariates for prediction and those necessary for causal identification.
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(4) Identifiability conditions

A1* Consistency. If Ai = a, then Y a
i = Yi .

A2* Conditional exchangeability in the trial. (Y a ⊥⊥ A|X ,S = 1).

A3* Positivity in the trial. For all x with positive density, i.e. fX |S=1(x |S = 1) > 0,
we have Pr[A = a|X = x ,S = 1] > 0.

A4* Conditional exchangeability of trial participation. Y a ⊥⊥ S|X .

A5* Overlap of participation. For all x with positive density, i.e.
fX |S=0(x |S = 0) > 0, we have Pr[S = 1|X = x ] > 0.

A1*-A3* are same as in observational setting, however A2* and A3* are assured
by design in the trial. In transportability, in essence we exchange them for A4* and
A5*.
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(4) Identifiability conditions

L S A Y

U P

Figure: Causal directed acyclic graph showing law of observed data where identifiability
conditions hold.
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(5) Estimation and inference
If assumptions A1* through A5* hold, then ga(X ∗) tailored to the target population
is identified by

ga(X ∗) = E[E[Y |X ,S = 1,A = a]|X ∗,S = 0] (5)

or the equivalent inverse probability weighting representation

ga(X ∗) =
1

Pr [S = 0]
E

[
Pr [S = 0|X ]I(S = 1,A = a)

Pr [S = 1|X ]Pr [A = a|X ,S = 1]
Y
∣∣∣∣X ∗

]
. (6)

Similar estimation procedures as described above for the observational analysis
can be used.
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(6) Performance evaluation
If assumptions A1* through A5* hold, then the counterfactual MSE in the target
population can be written as

ψtr (a) = E[E[(Y − ga(X ∗))2|X ,S = 1,A = a]|S = 0]. (7)

or the equivalent inverse probability weighting representation

ψtr (a) =
1

Pr [S = 0]
E

[
Pr [S = 0|X ]I(S = 1,A = a)

Pr [S = 1|X ]Pr [A = a|X ,S = 1]
(Y − ga(X ∗))2

∣∣∣∣X ∗

]
. (8)

Similar estimation procedures as described above for the observational analysis
can be used. A doubly-robust estimator is also obtainable.
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What if we have data from a trial and an observational study?

Observational study sample (O0) :

ID X S A Y
1 15.2 0 0 15
2 0.5 0 0 10
3 4.7 0 1 25




+

Trial sample (O1) :

ID X S A Y
4 2.3 1 1 10
5 14.2 1 0 20
6 8.9 1 1 30
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Benchmarking
We define benchmarking as comparing causal estimates from an observational
analysis with those from a (prior) randomized trial. E.g., we could compare

gtrial(X ∗) = E[E[Y |X ,S = 1,A = a]|X ∗,S = 0]

to
gobs(X ∗) = E[E[Y |X ,S = 0,A = a]|X ∗,S = 0].

Successful benchmarking, e.g. ĝtrial(X ∗) ≈ ĝtrial(X ∗), can increase trust that the
assumptions underpinning observational analysis hold, but it does not guarantee
validity1.

In practice, benchmarking the result for each covariate pattern in X∗ may be infeasible in which case we may prefer E[ĝtrial (X
∗)] ≈ E[ĝtrial (X

∗)]
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assumptions underpinning observational analysis hold, but it does not guarantee
validity1.

In practice, benchmarking the result for each covariate pattern in X∗ may be infeasible in which case we may prefer E[ĝtrial (X
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Joint analysis

If benchmarking is successful, then a natural question is: can we simply
combine them?

We define joint analysis of the trial and observational data as

gjoint(X ∗) = E[E[Y |X ,A = a]|X ∗,S = 0]

that is, fitting a model in the combined data from the randomized trial and
observational study then standardizing to the covariate distribution in the target
population.

If assumptions hold, joint analysis will always be more efficient!
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Empirical example

CASS = Coronary Artery Surgery Study

Participants (N = 1,686) could select to be a part of a randomized trial (S = 1)
and if they declined they were offered to participate in an observational study
(S = 0).

Outcome: 10-year cumulative risk of mortality

Intervention(s): Coronary artery bypass grafting surgery plus medical therapy
(hereafter surgery, A = 1) versus only medical therapy (A = 0).

Prediction model: random forest fit using 50% of data (training) and evaluted in
hold out (test).
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Empirical example
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Thank you! Questions?

Contact me:
# boyerc5@ccf.org
§ @boyercb
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