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The test-negative design

The test-negative design (TND) is frequently used to monitor the effectiveness of
vaccines under real-world conditions.
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Setup

We define the following:

• X is vector of pre-vaccine covariates,

• V is vaccination status (0/1),

• I is symptomatic illness where1

I :=


I = 2 when symptomatic illness is caused by the pathogen of interest

I = 1 when symptomatic illness is caused by something else

I = 0 when no symptomatic illness

• T is an indicator of receiving a test for the pathogen of interest (0/1),

• I ∗ is the result of the test (assume perfect for now).

1This implies mutually exclusivity of test positive and test negative illnesses and was first suggested in
Schnitzer (2022)
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Estimand: causal risk ratio among the vaccinated

In a TND study, the causal estimand is the marginal risk ratio2, i.e.

ΨRR :=
Pr[I 1 = 2,T 1 = 1]

Pr[I 0 = 2,T 0 = 1]
,

with VE = 1− RR.

Here, we focus instead on the risk ratio among the vaccinated3, i.e.

ΨRRV :=
Pr[I 1 = 2,T 1 = 1|V = 1]

Pr[I 0 = 2,T 0 = 1|V = 1]
.

2The outcome 1(I = 2,T = 1) is referred to as “medically-attended illness” in TND literature, e.g.
Jackson and Nelson (2013).

3This parameter is similar to the average treatment effect on the treated (ATT) in the causal inference
literature.
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Identifiability conditions

(A1) Consistency. For all individuals i , we have I vi = Ii and T v
i = Ti when Vi = v .

(A2) No effect of vaccination on the test-negative outcome or selection among the
vaccinated. That is, Pr[I 0 = 1,T 0 = 1|V = 1,X ] = Pr[I 1 = 1,T 1 = 1|V = 1,X ].

(A3) Odds ratio equi-confounding. That is,

OR2(X ) = OR1(X ),

where ORi (X ) :=
Pr[I 0 = i ,T 0 = 1|V = 1,X ] Pr[I 0 = 0,T 0 = 1|V = 0,X ]

Pr[I 0 = 0,T 0 = 1|V = 1,X ] Pr[I 0 = i ,T 0 = 1|V = 0,X ]
.

(A4) Overlap of vaccination among test-positives and test-negatives. Define Si (v)
as the support of the law of (I v = i ,T v = 1,V = v ,X ) for v ∈ {0, 1}, then

S2(1) ⊆ S2(0) and S2(v) ⊆ S1(v).
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More on equi-confounding

By simple factorization, we can split A3 into4:

(A3a) Odds ratio equi-confounding.

Pr[I 0 = 2|V = 1,X ]

Pr[I 0 = 2|V = 0,X ]
=

Pr[I 0 = 1|V = 1,X ]

Pr[I 0 = 1|V = 0,X ]
.

(A3b) Odds ratio equi-selection.

Pr[T 0 = 1|I 0 = 2,V = 1,X ]

Pr[T 0 = 1|I 0 = 2,V = 0,X ]
=

Pr[T 0 = 1|I 0 = 1,V = 1,X ]

Pr[T 0 = 1|I 0 = 1,V = 0,X ]
.

4A similar condition was discussed in Lewnard et al. (2018) for TND and Park and Tchetgen (2023)
and Tchetgen, Park, and Richardson (2023b) for difference-in-differences designs.
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Causal model
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Result 1

Theorem

Under A1 - A4, Ψ(X ) is identified by

Ψom(X ) :=
Pr[I = 2,T = 1|V = 1,X ]/Pr[I = 1,T = 1|V = 1,X ]

Pr[I = 2,T = 1|V = 0,X ]/Pr[I = 1,T = 1|V = 0,X ]

which is equivalent to the difference-in-difference operator for the outcomes
1(I = 2,T = 1) and 1(I = 1,T = 1) on the multiplicative scale.
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Sketch of proof

Start with

ΨRRV (X ) :=
Pr[I 1 = 2,T 1 = 1|V = 1,X ]

Pr[I 0 = 2,T 0 = 1|V = 1,X ]
.

Multiply by Pr[I 0=2,T 0=1|V=0,X ]
Pr[I 0=2,T 0=1|V=0,X ]

= 1. Under A1, we have that

ΨRRV (X ) =
Pr[I = 2,T = 1|V = 1,X ]

Pr[I = 2,T = 1|V = 0,X ]︸ ︷︷ ︸
observed risk ratio

× Pr[I 0 = 2,T 0 = 1|V = 0,X ]

Pr[I 0 = 2,T 0 = 1|V = 1,X ]︸ ︷︷ ︸
de-biasing term

.

9 / 14



Sketch of proof (cont.)

Under A2 and A3, the de-biasing term is equivalent to

Pr[I 0 = 2,T 0 = 1|V = 0,X ]

Pr[I 0 = 2,T 0 = 1|V = 1,X ]
=

Pr[I = 1,T = 1|V = 0,X ]

Pr[I = 1,T = 1|V = 1,X ]

Therefore, we have that

ΨRRV (X ) =
Pr[I = 2,T = 1|V = 1,X ]/Pr[I = 1,T = 1|V = 1,X ]

Pr[I = 2,T = 1|V = 0,X ]/Pr[I = 1,T = 1|V = 0,X ]
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Result 2

Theorem

Under selection S = 1(I ̸= 0,T = 1), Ψom(X ) is equivalent to

Ψ∗
om(X ) =

Pr[I ∗ = 1|S = 1,V = 1,X ]/Pr[I ∗ = 0|S = 1,V = 1,X ]

Pr[I ∗ = 1|S = 1,V = 0,X ]/Pr[I ∗ = 0|S = 1,V = 0,X ]

which is also equal to the conventional odds ratio estimated in a logistic regression of I ∗

on V and X .
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Additional results

In the preprint, we additionally

• Derive estimators for ΨRRV based on outcome-modeling and inverse probability
weighting.

• Derive estimator for ΨRRV based on efficient influence function that can be used
with more flexible machine-learning estimators.

• Assess robustness to model misspecification and statistical properties of our
estimators.

• Investigate finite sample performance of our estimators via simulation.

• Discuss violations of our assumptions.
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What is the ideal test-negative illness?

Broome, Facklam, and Fraser (1980)
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Other papers

• Schnitzer (2022)

• Jiang et al. (2023)

• Park and Tchetgen (2023)

• Tchetgen, Park, and Richardson (2023b)

• Tchetgen, Park, and Richardson (2023a)

• Li et al. (2023)
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