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In your own words, explain to me...

What is a random variable?

0



In your own words, explain to me...

What is an expected value?

0



In your own words, explain to me...

What is variance?

0



Relationships between random

variables



Relationships between random variables

One of the primary aims of statistics in the population health

sciences is to describe the relationship between two or more

random variables, e.g.

• what is the relationship between income and health?

• are people who smoke more likely to develop lung cancer?

• is increased air pollution associated with excess mortality in

children?
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Covariance

One way we can assess the relationship between two random

variables is their covariance:

Cov[X ,Y ] = E[(X − E[X ])(Y − E[Y ])]

This measures the tendency of two random variables to“move

together”. If they tend to move in similar directions, the covariance

is positive; if they tend to move in opposite directions, it’s negative.

In one, sense it is the natural generalization of variance to the

bivariate case.
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Covariance: intuition
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Covariance: intuition
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Covariance: intuition
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Covariance: intuition
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Covariance: intuition
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Covariance: intuition
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Covariance: intuition
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Properties of covariance

Some important properties of the covariance:

• As with expectation and variance, Cov[·, ·] is an operator not

a function so Cov[X ,Y ] is a constant.

• The covariance is symmetric, i.e. Cov[X ,Y ] = Cov[Y ,X ].

• The covariance of a random variable with itself is just the

variance, i.e. Cov[X ,X ] = Var[X ].
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Sample covariance

Applying the plug-in principle, we can calculate the sample

covariance by exchanging expectations for sample means.

Ĉov[X ,Y ] =
1

n − 1

n∑
i=1

(xi − x)(zi − z)

This estimates the“true”population covariance under the normal

regularity conditions.

11



Sample covariance: example

We observe the following data of course satisfaction ratings and

whether or not the instructor brought candy to lecture:

Satisfaction (Y )

1 2 3 4

candy (X = 1) 2 5 2 19

no candy (X = 0) 32 14 4 22

Ĉov[X ,Y ] =
1

n − 1

n∑
i=1

(xi − x)(zi − z) = 0.231

The fact that this is positive tells us that larger values of Y (higher

satisfaction) tend to occur more often with large values of X

(lectures with candy).
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Limitations of covariance

The covariance is sensitive to the scale of the random variables.

13



Limitations of covariance

The covariance can’t tell you about the strength of the relationship

between random variables.
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Correlation

One way we could overcome these limitations is to develop a

standard scale for the covariance.

Indeed, if we standardize the covariance by dividing by the product

of the standard deviation (σ[X ] =
√
Var[X ]), we get the

correlation, which we often refer to with ρ.

ρ[X ,Y ] =
Cov[X ,Y ]

σ[X ]σ[Y ]

The correlation is another useful summary of the relationship

between random variables.
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Correlation: intuition
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Correlation: intuition
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Correlation: intuition
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Improvements over covariance

The correlation is NOT sensitive to the scale of the random

variables.
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Improvements over covariance

The correlation DOES tell you something about the strength of the

relationship between random variables.
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Properties of correlation

Some important properties of the correlation:

• ρ[·, ·] is an operator not a function so ρ[X ,Y ] is a constant.

• The correlation is constrained to be between -1 and 1, i.e.

−1 ≤ ρ ≤ 1.

• Like the covariance the correlation is symmetric, i.e.

ρ[X ,Y ] = ρ[Y ,X ].

• The correlation of a random variable with itself is always one,

i.e. ρ[X ,X ] = 1.
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Limitations of correlation

The correlation only tells you about the linear dependence between

random variables.
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Limitations of correlation

The correlation doesn’t tell you how much one random variable

changes with the other (i.e. slope).

23



Aside: Independence

Recall, two random variables, X and Y , are said to be independent

if knowing the outcome for one provides no information about the

probability of any outcome for the other, i.e. if their distributions

do not depend on other.

f (x , y) = f (x)f (y)

We write X ⊥⊥ Y to denote that X and Y are independent
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Independence, correlation, and covariance

Independence, correlation, and covariance are tightly bound

concepts.

If X and Y are independent then their correlation and covariance

are necessarily zero, i.e. X ⊥⊥ Y implies:

Cov[X ,Y ] = 0

ρ[X ,Y ] = 0

HOWEVER, the converse is not true; a zero correlation or

covariance does NOT imply that X and Y are independent (for

one just look at previous slide).

25



Try it yourself!

Open the file regression-1.R and complete

the exercises
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Conditional Expectation

Thus far, we’ve talked about covariance and correlation and found

them both in some sense wanting. Another way we can describe

the relationship between random variables is the conditional

expectation.

E[Y | X = x ] =
∑
y

yf (y | x)

E[Y | X = x ] =

∫ ∞

∞
yf (y | x)dy

These expressions may look intimidating, but the conditional

expectation is just the expectation, or population average, of Y at

a pariticular value of X .
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Conditional Expectation

What is your best estimate as to the value of E[Y | X = 1]?
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Conditional Expectation

What is your best estimate as to the value of E[Y | X = 0]?
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Conditional Expectation

What is your best estimate as to the value of E[Y | X = 2]?
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Conditional Expectation Function

Taking this one step further we can begin to conceive of a

conditional expectation function that maps the population average

or expectation of Y to each value of X .
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Why CEF is important

In some sense the conditional expectation function is exactly what

we’ve been looking for to describe relationships between random

variables in the population health sciences.

• it describes how the mean of one random variable changes

with values of another

• it can be of any form (linear/nonlinear, smooth/nonsmooth)

• it is pretty straightforward to understand
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Why CEF is important
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Aside: CEF for more than 2 variables

You might be wondering why we’ve spent so much time with just

relationships between two variables (i.e. X and Y ). Well partially

that’s because the previous methods, covariance and correlation,

are really only suited to bivariate relationships.

However the conditional expectation function shares no such

limitations. We can extend the concept to many variable

situations, e.g.

E[Y | X = x ,Z = z ,W = w ]

Note that the , here implies ”AND”, e.g. when X is 1 and Z is 2

and W is 3.
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Why can’t we just use the CEF

The problem is that the conditional expectation function is

fundamentally a population concept.

Unless we have god-like omniscience we generally don’t know what

the true CEF is, but rather we have to make due with samples to

learn/make inferences about what it might look like.
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Why can’t we just use the CEF

What is the value of the CEF at X = 5?
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Statistical models



Statistical models

One way we can tackle the problem that we are unable to observe

the true CEF, is to make some assumptions about what form it

might take.

In essence this is all a model really is: a restriction on the possible

values that the CEF might take, i.e.

E[Y | X = x ] = function(X )
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“All models are wrong, but some are useful”

George Box
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Statistical models

Returning to our last example, if we assume that the CEF is a

linear function of X , what can we say about the likely value of

E [Y | X = 5]?
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A simple linear model

Consider the common model:

E [Y | X = x ] = β0 + β1X

In this model all the values of the conditional mean of Y can be

completely determined if we know the values of two parameters β0

and β1.

Why does this make sense? Think back to high school geometry.
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A simple linear model

Ok but what do β0 and β1 represent? Well let’s start by

considering what happens when we set X to zero.

E [Y | X = 0] = β0 + β1 · 0 = β0

The parameter β0 is just the value of the conditional mean of Y

when X is zero or, in other words, β0 is the intercept.
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A simple linear model

Knowing this we can now also figure out what β1 represents by

using just a little math...

E [Y | X = 1] = β0 + β1

E [Y | X = 0] = β0

E [Y | X = 1]− E [Y | X = 0] = (β0 + β1)− (β0) = β1

The parameter β1 is just the change in the value of the conditional

mean of Y for a unit change in X or, in other words, β1 is the

slope of the line.
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A single binary predictor

Let’s return to the example of a single binary predictor. What

assumptions is the model E [Y | X = x ] = β0 + β1X imposing?
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Saturated models

We call models like the previous one saturated or nonparametric

models because they contain a parameter for every possible value

of X .

In general these occur when models have only discrete predictor

variables (e.g. binary and categorical predictors) and include all

possible interaction terms.
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More flexible models

What if we wanted to make our model a bit more flexible? For

instance what if we believed the true CEF might follow a quadratic

form?

E [Y | X = x ] = β0 + β1X + β2X
2

Voila! Let’s just add another parameter β2 to capture this possible

quadratic relationship.

Side note: is this still a linear model?
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If the graph above represents the true CEF

will the model E [Y | X = x ] = β0 + β1X

correctly estimate the CEF? A. Yes B. No 43



If the graph above represents the true CEF

will the model E [Y | X = x ] = β0 + β1X + β2X
2

correctly estimate the CEF? A. Yes B. No 43



If the graph above represents the true CEF

will the model E [Y | X = x ] = β0 + β1X

correctly estimate the CEF? A. Yes B. No 43



If the graph above represents the true CEF

will the model E [Y | X = x ] = β0 + β1X + β2X
2

correctly estimate the CEF? A. Yes B. No 43



Which model imposes more restrictions on

(makes more assumptions about) the CEF?

A. E [Y | X = x ] = β0 + β1X

B. E [Y | X = x ] = β0 + β1X + β2X
2
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Regression



Estimating parameters of statistical models

A logical question you might have had in the previous section is

how do I actually get numerical values for the parameters (i.e. the

βs) in my statistical model?

Regression is a tool for estimating the parameters of a statistical

model. In that vein you can think of it just like any other recipe

like the sample mean.

An important by product of this is that regression tells us how to

get the coefficients for our models, but it tells us nothing about

whether those models are right.
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Reminder about estimation terminology

The estimand is the population quantity of interest whose true

value you want to know.

E[Y | X = x ] = β0 + β1X

An estimator is a method for estimating the estimand.

β̂1 =

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2

An estimate is a numerical estimate of the estimand that results

from the use of a particular estimator.

β̂1 = 32
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Ordinary least squares

A common method for estimating the parameters of a statistical

model is to use ordinary least squares (OLS).

Ordinary least squares attempts to find the values of the

parameters (i.e. the βs) such that the sum of squared deviations

from the conditional mean are minimized.

1

n

n∑
i=1

(yi − ̂E [Y | X ])2
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OLS graphical intuition
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OLS graphical intuition
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OLS graphical intuition
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The OLS recipe

It turns out we can find the values of the βs that minimize the sum

of squares using a bit of calculus. (Hint: it involves derivatives; for

those interested in the details for how this done see me later)

Perhaps a somewhat surprising result is that the estimate for the

slope e.g. β1 is

β̂1 =

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2

Which is also the sample covariance of X and Y over the variance

of X !

β̂1 =
̂Cov [X ,Y ]

V̂ar [X ]
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OLS is BLUE

You may be wondering: why all this concern about minimizing the

sum of squares?

A surprising result that we’ll discuss more in the course is that

minimizing the sum of squares turns out to be the best linear

estimator you can come up with.

By best we mean the estimator with no bias that has the lowest

variance (i.e. is the most precise). You’ll sometimes hear

statisticians refer to estimators that achieve this as best linear

unbiased estimators (BLUE).
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Try it yourself!

Open the file regression-2.R and complete

the exercises
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I run a regression of self reported happiness

on an indicator of whether students attend a

statistics lecture on a perfectly sunny Friday

and find to my horror that students who

attend are 50 points less happy than those

that do not (β = -50). Does this mean that

attending a statistics lecture on a perfectly

sunny Friday causes students to be less happy?

A. Yes

B. No

C. I don’t care just get me out of here
51



What if I told you that the data used in this

study come from a large randomized trial in

which on a given sunny Friday, students were

randomly assigned to either attend a lecture

or not attend a lecture. In this case would you

say the results imply that attending a

statistics lecture on a perfectly sunny Friday

causes students to be less happy?

A. Yes

B. No

C. I still don’t care... did you say it’s sunny

outside? 51



Connection to causal inference

A key insight here is that estimates obtained via regression provide

a numeric estimate of how the mean of Y changes with X , but

says NOTHING about the nature of that estimate. Therefore we

ofter refer to these estimates as associations.

Additional inferences about whether the estimate is likely to be of

a causal effect require additional assumptions about the data

generation process that gave rise to the observations under study.

Or put more simply, regression is dumb!
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