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Background

The bootstrap is a widely used resampling technique for obtaining standard errors and confidence intervals for
complex estimators or when the parametric assumptions underlying traditional methods fail. It is a simple
but powerful tool that is an essential part of any applied statistician’s toolbox. However, to truly understand
why we need the bootstrap and how it works, we need to briefly revisit some of the foundational statistical
principles we learned in PHS2000A.

Identification versus estimation

Recall that a fundamental task in the population sciences is collecting observations on a subset of individuals
and using them to draw inferences about population quantities of interest. These quantities could be
descriptive, like the proportion of people infected with the novel coronavirus, or casual, like the effect of the
distribution of insecticed-treated bednets on the incidence of malaria, but regardless our project is generally
to attempt to draw general conclusions based on the data. The inference problem can be usefully divided
into two components: the problem of identification and the problem of estimation.



e The problem of identification refers to whether our target quantity could ever be unbiasedly determined
from our data, e.g. if, for instance, we had an infinite sample size.

e The problem of estimation refers to the weaker set of conclusions that can be drawn about our target
given that we only observe a finite set of random samples, even if it is identified.

You can think of the problem of identification as relating to systematic error in our inferences while the problem
of estimation relates to inferences based on the random variability inherent in the sampling process. When the
target of interest is a causal effect, identification is based on the conditions we’ve discussed: exchangeability,
consistency, and positivity (or alternatively no bias due to confouding, selection, or measurement). On this
basis, it seems logical that identification should proceed estimation as a lack of identifiability implies that
estimation is fruitless (we couldn’t get the right answer even if we had infinite data). However, most of
the inferential tools at our disposal —hypothesis tests, confidence intervals, and p-values— are only useful
to characterize uncertainty in estimation, and can fail spectacularly’ when the underlying target is not
identifiable. Likewise the bootstrap is just another technique for characterizing uncertainty in estimation and
as such only makes sense when the target is identifiable. For the purposes of this lab we will just assume
from here on out that the identifiability conditions hold, but note that they are always a necessary condition
for any estimation of uncertainty to be valid.

The superpopulation model

In order to characterize how likely an observed result is under random variability, we make a couple of
useful assumptions. We assume there’s a near-infinite and well-defined superpopulation and our data is a
random sample from this superpopulation. Our goal is to make inferences about identifiable superpopulation
quantities. We call this population target quantity the estimand (e.g. mean height of women under 30 in
the population, the population average treatment effect on infection risk if everyone washed their hands
versus if no one did). An estimator is a rule/recipe we use for taking the data from a sample and producing
a numerical value for the the estimand. The numeric value for the estimand in a particular sample is an
estimate. Finally we use statistical theory to quantify how compatible our estimate is with different values of
the estimand, for instance by calculating a confidence interval.

Superpopulation Estimand: p
Jxl, o X i
. . = _ 1
Sample Estimator: X = = 3. X

|

Estimate: X = 32

|

Inference: 95% CI for pu = (25, 39)

1This is what Miguel emphasized during his lecture, that p-values and confidence intervals no longer retain their original
meaning if the underlying identifiability assumptions no longer hold



Superpopulation Estimand: RD = Pr[Y,—1 = 1] — Pr[Y,—o = 1]
J()q7A1)7...,(Yn,An) iid.
Sample Estimator: RD =Pr[Y =1 A=1]—Pr[Y =1| A =0]

|

Estimate: RD = 0.075

|

Inference: 95% CI for RD = (0.023,0.134)

What is the sampling distribution?

A useful concept in the quantification of uncertainty in our estimates is the sampling distribution. The
sampling distribution is simply the distribution of estimates across all possible samples of the same size
from the same population. It’s useful because it tells us how likely a specific estimate value is to occur due
simply to random variability during sampling. In general, the sampling distribution is a function of the
sample size and the intrinsic variability of the estimand/target quantity in the population. As the sample
size increases the sampling distribution for a consistent estimator will get tighter and tighter around the true
value, reflecting additional confidence in the likely values of the population quantity.

Distribution of sample mean for samples of varying size
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What is a standard error?

A standard error is simply the standard deviation of the sampling distribution. If we were to
take a number of samples from the population and get an estimate from each one (repeating the sampling
and estimation methods exactly each time), we could literally take the standard deviation of those values to
estimate the standard error. Recall that the standard error decreases as the sample size increases: e.g., the
standard error of the sample mean is ﬁ For example, if you are estimating mean height in the U.S., you
will get a more precise estimate if you have 1000 subjects instead of 100. What about the ¢ in the numerator?
Intuitively, if we are estimating the mean of a random variable that has little variablility in the population,
we will get more precise estimates than if we’re estimating the mean of something that’s highly variable.

Classical approaches to asymptotic standard errors

For the majority of estimators that we care about (e.g., sample means, regression coefficients, etc.), someone
has already used statistical theory to derive an exact or approximate standard error. For example, SE = ﬁ

for the sample mean is an approximation based on the Central Limit Theorem. Sometimes these theoretically-
derived standard errors are valid only when the data fulfill certain distributional assumptions.

What if you’re interested in a more exotic statistic — like the marginal risk difference — or have
data that don’t fulfill distributional assumptions?

There are a few options:
1. Try to mathematically derive or approximate the standard error for your specific situation.

2. Rob a bank. Use the money to repeat your experiment 10,000 times. Calculate your exotic statistic
each time. Take the standard deviation of the estimates.

3. Instead of robbing a bank, use your single experiment to approrimate what would happen if you had
actually repeated the experiment 10,000 times. We can do this using bootstrapping.

The bootstrap

The bootstrap is a very general algorithm for doing inference. You can bootstrap standard errors, confidence
intervals, and hypothesis tests. All of it can be done without complicated variance derivations, distributional
assumptions, or large sample theory.

The fundamental idea

The basic idea behind the bootstrap is quite elegant: given that we already assume that our data are a
random sample from the population why not pretend that the population distribution that we are sampling
from looks exactly like the sample that we have (a reasonable assumption under random sampling). Then we
can just draw samples from the empirical distribution in our dataset to simulate the sampling distribution of
our estimator and use that to calculate confidence intervals and p-values.
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Figure 8.1. A schematic diagram of the bootstrap as it applies to one-
sample problems. In the real world, the unknown probability distribution
F gives the data x = (1,22, ,%n) by random sampling; from x we
calculate the statistic of interest § = s(x). In the bootstrap world, F'
generates X* by random sampling, giving 6* = s(x*). There is only one
observed value of 6, but we can generate as many bootstrap replications
0* as affordable. The crucial step in the bootstrap process is “=”, the

process by which we construct from x an estimate F' of the unknown
population F.

1. Draw sample of size n with replacement from the observed data
Calculate our statistic of interest in the simulated bootstrap sample é\b

Repeat steps 1 and 2 a total of B times

L

Use the resulting collection of B bootstrap estimates {§1, (/9\2, ceey @\B} as an estimate of the sampling
distribution we would have observed under repeated sampling from superpopulation.

5. Use simulated sampling distribution to calculate inferential quantities (e.g. confidence intervals, p-values,
ete.)

Bootstrapping assumes that the sample at hand reflects the relative distribution of the underlying variables in
the population — fully random representative sample. If the relative frequency of each “type” of observation
is the same in the sample as it is in the population, we can generate “artificial samples” that are also
representative of the underlying population.

By estimating the relation of interest in the bootstrapped samples, we can learn about the empirical distribution
of point estimates without making any parametric assumptions. The closer the sample distribution of X
to the true population distribution, the closer the in-sample bootstrapping gets to the “true” population
distribution, and the closer the distribution of the bootstrapped standard errors will get to the distribution
of the standard errors in independent random samples of the same size. The more diverse the underlying
population, and the smaller the sample at hand, the larger the differences between the true population
distribution and the distribution generated by bootstrapping.

Inference based on the bootstrap

Standard errors

As the bootstrap is meant to simulate the sampling distribution for our estimator, we can estimate the
standard error by just taking the standard deviation of our bootstrap estimates {61, 6s,...,05}.



5 o~ =
~ IS (6 — 0
SEpoot(0) = —Zb_é(f 1 b)

There are two general approaches to using the bootstrap to calculate confidence intervals. The first may look
very familiar. Under the normal approximation, we could just take the estimate of the standard error we
found by taking the standard deviation of the boostrap distribution from above, multiply it by 1.96 and
add/subtract it from our original estimate to get a 95% confidence interval.

Confidence intervals

95% Clyoot(0) = (QA* Z0.9755 Epoot (8), 6 + Z0.975SEboot(§)>

This assumes that the sampling distribution at this sample size is at least approximately normal.

However another method that does not rely on any assumption about the underlying distribution is to just
calculate the 2.5th and 97.5th percentiles of the bootstrap distribution and use those to define our interval.
This goes back to the fundamental concept of what a confidence interval is (i.e. an interval that will contain
the true value of the estimand in 95% of repeated samples).

95% Clooor (0) = (12501, as7.5 (0h)

Hypothesis testing and p-values

We can perform hypothesis tests of the form

H0:0:00
Hy 0 # 6,

by either again using a normal approximation

b—6
——2_ ~ N(0,1)
SEboot (9)

or by using the equivalence between confidence intervals and hypothesis tests to conduct a test.

Reject HO if 90 (S (QQ,5(§1)), q97,5(§b))

The bootstrap-t

Notice that, under certain regularity conditions, the bootstrap procedure can work for any function statistic
or function of the observed data, e.g. the mean, the median, a f coefficient, the marginal risk difference, etc.
This can be useful when we want to get standard errors or confidence intervals for some complex statistic or
combination of regression coefficients where there is no other available method for calculating asymptotic
properties. However, in some circumstances some statistics may also just perform better under boostrap
than others. For instance, a commonly used variant of the bootstrap collects the ¢-statistic in each bootstrap
sample. This variant tends to have better properties in finite samples than just bootstrapping the regression
coefficient for instance because the ¢-statistic is “asymptotically pivotal” (i.e. does not depend on any unknown
information). This modified bootstrap-t procedure is as follows:

1. Draw sample of size n with replacement from the observed data

2. Calculate our statistic of interest in the simulated bootstrap sample t, = S;(%\)
b




Repeat steps 1 and 2 a total of B times

Use the resulting collection of B bootstrap estimates {t1,ts,...,tp} as an estimate of the sampling
distribution of our observed t-statistic if we repeatedly sampled from superpopulation.

Use simulated sampling distribution to calculate a p-value by P(|t*| > go.975(ty)) where ¢* is observed
t-statistic in real data.

While the bootstrap-t is a really powerful procedure for hypothesis testing/calculating p-values, a downside
of the bootstrap-t is that it cannot be used to calculate standard errors or confidence intervals.

Bootstrap variants

Cluster/Block bootstrap

What if our data are not i.i.d. samples from a superpopulation but instead might be correlated; for example,
what if our data contain multiple measurements on the same individual over time or are randomly sampled
within geographic clusters? Well as before we can use the insight that our bootstrap procedure is an insample
stand in for the sampling/data generation mechanism to tweak the basic bootstrap procedure to accomodate
correlated data. The basic idea is to resample blocks or clusters of possibly correlated observations rather
than resampling individual observations.

1.

If data consists of n observations from C' clusters, block sample C' of the original clusters with replacement
from the observed data

Calculate our statistic of interest in the simulated bootstrap sample é\b
Repeat steps 1 and 2 a total of B times

Use the resulting collection of B bootstrap estimates {51, 52, ey 53} as an estimate of the sampling
distribution we would have observed under repeated sampling of clusters from superpopulation.

Use simulated sampling distribution to calculate inferential quantities (e.g. confidence intervals, p-values,
ete.)

Residual bootstrap

In the regression context sometimes it makes more sense to view the Xs as fixed and resample the er-
rors/residuals.

1.
2.

3.

4.

fit Y; = Bo + 51X, + €; to the real data, predict ?Z and &;
in each bootstrap iteration, b=1,2,..., B

(a) assign each observation, i, a new ¢}, drawn randomly from the estimated residuals from observed
data {€1,22,...,en}

(b) calculate a new outcome by adding resampled residual to predicted outcome from observed data
v =Yi+e,
(c) fit Y5 = Bo + f1X; + €4 to obtain Bb or tp.

Use the resulting collection of B bootstrap estimates {Bl, Bg, ey BB} as an estimate of the sampling
distribution we would have observed under repeated sampling from superpopulation.

Use simulated sampling distribution to calculate inferential quantities (e.g. confidence intervals, p-values,
ete.)



The residual method is more natural/efficient in the regression context; however while it makes no assumptions
about the exact distribution of the residuals it does assume that they are homoscedastic and therefore doesn’t
make sense to use in cases where you expect heteroscedasticity.

This method can be adapted for clustered data by resampling blocks of residuals instead of individual residuals
however it does require equal cluster size (otherwise it’s unclear how to assign resampled residuals).

Wild bootstrap

An alternative regression-based bootstrap technique is the so-called wild bootstrap. Unlike the residual
method, the wild bootstrap preserves the {e;, X;} relationship and therefore can be used when there is
suspected heteroscedasticity. It also does not require equal cluster/group sizes when using the cluster variant.
The basic procedure is as follows:

1. fit Y; = By + 81X, + €; to the real data, predict ?Z and &;
2. in each bootstrap iteration, b =1,2,..., B
(a) calculate a new outcome by randomly drawing
. }/}1 +&; with prob. 0.5
i )A/Z —&; with prob. 0.5
(b) fit Y;; = Bo + £1X; + €4 to obtain Bb or tp.

3. Use the resulting collection of B bootstrap estimates {Bl, 32, ey BB} as an estimate of the sampling
distribution we would have observed under repeated sampling from superpopulation.

4. Use simulated sampling distribution to calculate inferential quantities (e.g. confidence intervals, p-values,
ete.)

The wild bootstrap is more versatile than the residual bootstrap has been shown to perform better in small
sample sizes. However, it does assume that errors are mean independent, i.e. E[e; | X;] = Eley].

Examples of when the bootstrap might perform better than classic approaches

The following tables are from Cameron, Gelbach, and Miller (2008), which I highly recommend. They show
the simulated performance of the cluster variants of the different bootstrap procedures from this lab and
compares them with traditional standard errors as well as those heteroscedasticity and cluster robust standard
errors we talked about in 2000A. In general the bootstrap performs quite well. The wild boostratp-t in
particular retains appropriate rejection rates even in data sets with very few clusters.



TaBLE 3.—1,000 SIMULATIONS FROM DGP WITH GROUP-LEVEL RANDOM ERRORS AND HETEROSKEDASTICITY
(Rejection rates for tests of nominal size 0.05 with simulation standard errors in parentheses)

Number of Groups (G)

Estimator
# Method 5 10 15 20 25 30

1 Assume i.i.d. 0.302 0.288 0.307 0.295 0.287 0.297
(0.015) (0.014) (0.015) (0.014) (0.014) (0.014)

2 Moulton-type estimator 0.261 0.214 0.206 0.175 0.174 0.180
(0.014) (0.013) (0.013) (0.012) (0.012) (0.012)

3 Cluster-robust 0.208 0.118 0.110 0.081 0.072 0.068
(0.013) (0.010) (0.010) (0.009) (0.008) (0.008)

4 CR3 residual correction 0.138 0.092 0.086 0.070 0.062 0.062
0.011) (0.009) (0.009) (0.008) (0.008) (0.008)

5 Pairs cluster bootstrap-se 0.174 0.111 0.109 0.085 0.074 0.070
(0.012) (0.010) (0.010) (0.009) (0.008) (0.008)

6 Residual cluster bootstrap-se 0.181 0.169 0.183 0.157 0.149 0.163
(0.012) (0.012) (0.012) (0.012) 0.011) (0.012)

7 Wild cluster bootstrap-se 0.019 0.041 0.057 0.040 0.038 0.043
(0.004) (0.006) (0.007) (0.006) (0.006) (0.006)

8 Pairs cluster bootstrap-BCA 0.183 0.103 0.099 0.082 0.070 0.064
(0.012) (0.010) (0.009) (0.009) (0.008) (0.008)

9 BDM bootstrap-t 0.181 0.108 0.110 0.090 0.070 0.068
(0.012) (0.010) (0.010) (0.009) (0.008) (0.008)

10 Pairs cluster bootstrap-t 0.079 0.067 0.074 0.058 0.054 0.053
(0.009) (0.008) (0.008) (0.007) (0.007) (0.007)

11 Pairs CR3 bootstrap-t 0.064 0.062 0.072 0.057 0.050 0.048
(0.008) (0.008) (0.008) (0.007) (0.007) (0.007)

12 Residual cluster bootstrap-t 0.066 0.057 0.066 0.049 0.043 0.047
(0.008) (0.007) (0.008) (0.007) (0.006) (0.007)

13 Wild cluster bootstrap-t 0.053 0.056 0.058 0.048 0.041 0.044
(0.007) (0.007) (0.007) (0.007) (0.006) (0.006)

T_distribution(G-2) 0.145 0.086 0.072 0.066 0.062 0.060

The first table shows the simulated rejection rates for tests of nominal size 0.05. The rows are different
methods for calculating standard errors and test statistics and the columns represent simulations for datasets
with different numbers of total clusters. If the procedure is performing correctly we expect that it should falsely
reject the null when the null is in fact true just 5% of the time. What we observe is that for low numbers of
clusters many techniques reject more than the nominal alpha level meaning that they are anti-conservative

(BAD).

TABLE 4.—1,000 SIMULATIONS FROM DIFFERENT DGPS (SEE TEXT) AND G = 10 Groups

(Rejection rates for tests of nominal size 0.05 with si dard errors in p heses)
Reject Xs are Unbalanced
Main—  based Cluster Cluster Cluster Constant Group
from onT Size = Size = Size = 4 RHS Within ~ Xs Are Sizes
Table 2 (8 dof) 2 10 100 Variables Group iid. (10, 50)
Estimator Column
# Method Number 1 2 3 4 5 6 7 8 9
1 Assume i.i.d. 0.491 0.106  0.268  0.679 0.687 0.770 0.054 0.524
(0.016) (0.010) (0.014) (0.015)  (0.015) 0.013)  (0.007) (0.016)
2 Moulton-type estimator 0.092 0.044  0.095 0098  0.088 0.089 0.125 0.061 0.129
(0.009) (0.006) (0.009) (0.009) (0.009) (0.009) (0.010)  (0.008) 0.011)
3 Cluster-robust 0.129 0.082 0.137 0.126  0.115 0.129 0.183 0.103 0.183
(0.010) (0.009) (0.010) (0.010) (0.010)  (0.010) (0.013)  (0.010) 0.012)
4 CR3 residual correction 0.090 0.054 0.094 0.086 0.077 0.080 0.090 0.086 0.091
(0.009) (0.007) (0.009) (0.009) (0.008) (0.009) (0.009)  (0.009) (0.009)
5 Pairs cluster bootstrap-se 0.120 0.071 0.100 0.114  0.120 0.128 0.063 0.122 0.138
(0.010)  (0.008) (0.009) (0.010) (0.010)  (0.010) (0.008)  (0.010) (0.011)
6 Residual cluster bootstrap-se 0.058 0.013 0.069 0.068 0.060 0.057 0.054 0.080
(0.007) (0.004) (0.008) (0.008) (0.008) (0.007) (0.007)  (0.009)
7 Wild cluster bootstrap-se 0.028 0.006 0048  0.044  0.032 0.030 0.036 0.053 0.019
(0.005) (0.002) (0.007) (0.006) (0.006)  (0.005) (0.006)  (0.007) (0.004)
8 Pairs cluster bootstrap-BCA 0.111 0.125  0.112  0.109 0.112 0.100 0.134 0.140
(0.010) (0.010) (0.010) (0.010)  (0.010) (0.009) (0.011) (0.011)
9 BDM bootstrap-t 0.119 0.08  0.115  0.112 0.119 0.121 0.097 0.128
(0.010) (0.009) (0.010) (0.010)  (0.010) (0.010)  (0.009) 0.011)
10 Pairs cluster bootstrap-t 0.096 0.085  0.083  0.086 0.090 0.066 0.079 0.120
(0.009) (0.009) (0.009) (0.009) (0.009) (0.008)  (0.009) (0.010)
11 Pairs CR3 bootstrap-t 0.090 0.075  0.077  0.081 0.084 0.050 0.082 0.110
(0.009) (0.008) (0.008) (0.009) (0.009) (0.007)  (0.009) (0.010)
12 Residual cluster bootstrap-t 0.055 0052  0.056  0.050 0.043 0.043 0.065
(0.007) (0.007) (0.007) (0.007)  (0.006) (0.006)  (0.008)
13 Wild cluster bootstrap-t 0.055 0.064 0.056 0.048 0.052 0.045 0.064 0.061
(0.007) (0.008) (0.007) (0.007)  (0.007) (0.007)  (0.008) (0.008)
T_distribution(8) 0.086

The second table is like the first however now we add some extra real-world scenarios. In column 7 the
intraclass correlation is is increased to 1 so that observations within clusters are perfectly correlated. In
column 8 the authors consider what would happen if we falsely assume clustering/correlation if the X's are in
fact i.i.d. In column 9 the authors use unbalanced clusters.



Bootstrap myths and misconceptions

The bootstrap is wonderful, but it is not a panacea. Beware of the following myths:
1. Myth: The bootstrap is a cure for small sample sizes.

People often use the bootstrap for sample sizes smaller than we would need for standard asymptotic inference
(e.g., confidence intervals based on the Central Limit Theorem). However, the bootstrap itself requires similar
asymptotics to hold. Intuitively, the bootstrap uses the observed data to stand in for the true distribution
that generated those data, and this only holds as n (the sample size in the original dataset) becomes large.
Sometimes the bootstrap works actually does work better than standard methods for small sample sizes, but
this isn’t necessarily the case.

2. Myth: No matter what estimator you have in mind, you can use bootstrapping.

For example, say we want a confidence interval for the maximum value in the sample. Can we use the
bootstrap? Unfortunately, no. The bootstrap works for estimators with certain “smoothness” properties. As
a rule of thumb, “smooth” estimators are things like sums, ratios, etc., of well-known estimators like sample
means, and — unlike the maximum value or median — they usually do not depend on specific data values.
Bootstrapping can fail specatularly with non-smooth estimators.

Implementation in R
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