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Outline

Today we will:

1. Review the derivation of the g-formula density, the assumptions under
which it recovers the counterfactual density we’re interested in, and how
we’ve estimated it to date.

2. Introduce the parametric g-formula as an alternative way to estimate the
g-formula density.

3. Work through a step by step example of the parametric g-formula using R.

4. Introduce the gfoRmula package in R, which makes estimating the
parametric g-formula much easier in practice.
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Setup

A0 L1 A1 N E[Y | A0, L1,A1]

0 0 0 6000 60
0 0 1 2000 60
0 1 0 2000 210
0 1 1 6000 210
1 0 0 3000 240
1 0 1 1000 240
1 1 0 3000 120
1 1 1 9000 120

Table: Homework 3 Frequency Table

Ya0,a1 ⊥⊥ A0

Ya0,a1 ⊥⊥ Aa0
1 | L

a0
1 ,A0

A0 L1 A1

U

Y

A0 | a0 La0
1 Aa0

1 | a1

U

Ya0,a1
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The g-formula density “recipe”

1. Draw the statistical DAG for the observed variables

A0 L1 A1 Y

2. Write down the usual factorization

f(a0, l1, a1, y) = f(a0)f(l1 | a0)f(a1 | a0, l1)f(y | a0, l1, a1)

3. Leave out terms for the treatment variables given their parents

f(l1 | a0)f(y | a0, l1, a1)

4. Whenever a treatment variable appears as a parent, set it equal to the value
specified by the regime

fG,g=(a0,a1)(y, l1) = f(l1 | a0)f(y | a0, l1, a1)
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Using the g-formula density

Once we have the joint density we can use basic probability theory to get other
quantities of interest.
Marginal distribution for Y

fG,g=(a0,a1)(y) =
∑
l1

fG,g=(a0,a1)(y, l1)

=
∑
l1

f(l1 | a0)f(y | a0, l1, a1)

Marginal mean of Y

EG,g=(a0,a1)[Y] =
∑
y

y · fG,g=(a0,a1)(y)

=
∑
y

y ·
∑
l1

f(l1 | a0)f(y | a0, l1, a1)

=
∑
l1

f(l1 | a0)
∑
y

y · f(y | a0, l1, a1)

=
∑
l1

E[Y | A0 = a0, L1 = l1,A1 = a1]f(l1 | a0)
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The g-formula and causality

Under the following assumptions:

1. Conditional/sequential exchangeability

Ya0,a1 ⊥⊥ A0

Ya0,a1 ⊥⊥ Aa0
1 | L

a0
1 ,A0

2. Consistency
Ya = Y | A = a

3. Positivity
0 < Pr(A0 = 1) < 1

0 < Pr(A1 = 1 | A0, L1) < 1

The g-formula density for g = (a0, a1) is equal to the distribution in the
counterfactual world where everyone follows g = (a0, a1).
That is:

fYa0,a1 (y)︸ ︷︷ ︸
Marginal

density for Ya0,a1

in counterfactual world

= fG,g=(a0,a1)(y)︸ ︷︷ ︸
G-formula

density for Y
in the factual world

ONLY if 1, 2, and 3 above are true
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Plug-in estimation of the g-formula

Recall that last week we estimated the g-formula by replacing its component
expectations and probabilities with their sample equivalents:

ÊG,g=ak [Y] =
∑
lk

plug in sample mean of Y
within strata of Ak and Lk︷ ︸︸ ︷

Ê[Y | Ak = ak, Lk = lk]
K∏

k=1

f̂(lk | lk−1, ak)︸ ︷︷ ︸
plug in sample

probability that Lk = lk
within strata of Lk−1

and Ak

This is sometimes called the plug-in estimator of the g-formula.
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Parametric g-formula

Instead of using sample means and probabilities, an alternative plug-in
estimator, the parametric g-formula, replaces the components of the g-formula
with parametric models of the outcome and the covariate histories:

ÊG,g=ak [Y] =
∑
lk

plug in estimates from
parametric

outcome model︷ ︸︸ ︷
Ê[Y | Ak = ak, Lk = lk]

K∏
k=1

f̂(lk | lk−1, ak)︸ ︷︷ ︸
plug in estimates from

parametric
covariate models

EPI 207 8



Reminder: what is a parametric model?

A parametric model restricts the joint distribution of the data, often through
limiting assumptions on the shape of the mean function and/or the form of the
conditional distribution of the outcome.

E[Y | A0 = a0, L1 = l1,A1 = a1] = µ(a0, l1, a1)︸ ︷︷ ︸
mean function

µ

Y | A0, L1,A1 ∼ Pθ︸︷︷︸
conditional
distribution

A common choice is a generalized linear model:

generalized linear
models



µ(a0, l1, a1) = β0 + β1a0 + β2l1 + β3a1
Y | A0, L1,A1 ∼ Normal(µ(a0, l1, a1), σ

2)

µ(a0, l1, a1) = logit−1(β0 + β1a0 + β2l1 + β3a1)

Y | A0, L1,A1 ∼ Bernoulli(µ(a0, l1, a1))

µ(a0, l1, a1) = log−1(β0 + β1a0 + β2l1 + β3a1)

Y | A0, L1,A1 ∼ Poisson(µ(a0, l1, a1))
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Outcome model

A0 L1 A1

U

Y

Given Y is continuous a reasonable choice is the following linear regression
model:

E[Y | A0, L1,A1] = β0 + β1A0 + β2L1 + β3A1

Y | A0, L1,A1 ∼ Normal(β0 + β1A0 + β2L1 + β3A1, σ
2)
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Covariate model(s)

A0 L1 A1

U

Y

Given L1 is binary a reasonable choice is the following logistic regression model:

Pr(L1 | A0) = logit−1(β0 + β1A0)

L1 | A0 ∼ Bernoulli(β0 + β1A0)
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Reminder: saturated models

If the number of parameters is equivalent to the number of possible values the
conditional mean of the distribution supports then we say our model is
“saturated”.

E[Y | A] = β0 + β1A
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Recall that a “saturated” model isn’t really a model at all — it imposes no real
restrictions on the joint distribution of the data. In this case, the estimates from
a saturated model will exactly coincide with the plug-in estimates.
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Modeling assumptions and bias-variance trade-off

As we introduce more modeling assumptions, we are reducing the number of
parameters that we need to estimate which will tend to lower the variance of our
estimates. However, by introducing the possibility that our models are
misspecified we are also increasing the potential for bias.

More assumptions = ↑ Bias + ↓ Variance
Less assumptions = ↓ Bias + ↑ Variance

The gamble: if our parametric models are correctly specified (i.e. if our
assumptions are correct) we get lower variance and therefore tighter confidence
intervals at no cost. However, absent knowledge of the true relationships we can
never be certain that our assumptions are correct.

EPI 207 13



Using simulation to approximate the sum/integral

We now have estimates of the components of the g-formula; however to
complete our estimation of the g-formula we still need to take the sum/integral
over the distribution of Lk:

For a discrete Lk

ÊG,g=ak [Y] =
∑
lk

Ê[Y | Ak = ak, Lk = lk]
K∏

k=1

f̂(lk | lk−1, ak)

For a continuous Lk

ÊG,g=ak [Y] =
∫
lk
Ê[Y | Ak = ak, Lk = lk]

K∏
k=1

f̂(lk | lk−1, ak)dLk

It turns out that we can approximate this sum/integral using Monte Carlo
simulation.
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Monte Carlo integration
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Simulation steps

The steps of the parametric g-formula:

1. Fit parametric models for the outcome and covariate history.

2. To approximate the sum/integral, starting at time 0 draw a random sample
of starting values from observed distribution at baseline. For each time
point k from 0 to K:
(a) Intervene to set values of treatment variables to be consistent with regime.
(b) Use fitted covariate models to estimate mean covariate values at time k + 1

based on current values at time k.
(c) Simulate realizations of the covariates at k + 1 using estimated mean and

residual variance.

3. Repeat steps (a) through (c) using the simulated realizations of the
covariates at k as the entries for the parameteric model in all future k∗ > k.

4. At the final time also estimate the outcome using the fitted outcome model
and all simulated covariate values.

5. Calculate the mean of all outcome estimates to get the final marginal
estimate.
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Example

Let’s use the parametric g-formula to estimate the marginal mean of Y for the
strategy g = (1, 1), i.e. we want

EG,g=(1,1)[Y]

Begin with the data in long format (i.e. each observation is person-time)

id time A L Y
1 0 0 NA NA
1 1 1 1 60
2 0 1 NA NA
2 1 1 0 210
...

...
...

...
...

1000 0 0 NA NA
1000 1 0 1 120
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Example

1. Fit parametric models for the outcome and covariate history.

Pr(L1 | A0) = logit−1(β0 + β1A0)

L1 | A0 ∼ Bernoulli(µ(a0))

E[Y | A, L, ] = β0 + β1A0 + β2L1 + β3A1

Y | A0, L1,A1 ∼ Normal(µ(a0, l1, a1), σ
2)

2. Draw a random sample of starting values from observed distribution at
baseline.

id time A L Y
315 0 0 NA NA
...

...
...

...
...
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Example

(a) Intervene to set values of treatment variables to be consistent with regime.
id time A L Y
315 0 1 NA NA
...

...
...

...
...

(b) Use fitted covariate models to estimate mean covariate values at time k + 1
based on current values at time k.

id time A L Y P̂r(L | A)
315 0 1 NA NA 0.6
...

...
...

...
...

...

(c) Simulate realizations of the covariates at k + 1 using estimated mean and
residual variance.

id time A L Y P̂r(L | A)
315 0 1 NA NA 0.6
315 1 1 1 NA NA
...

...
...

...
...

...
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Example

3. Repeat steps (a) through (c) using the simulated realizations of the
covariates at k as the entries for the parameteric model in all future k∗ > k.

4. At the final time also estimate the outcome using the fitted outcome model
and all simulated covariate values.

id time A L Y P̂r(L | A) Ê[Y | A, L]
315 0 1 NA NA 0.6 NA
315 1 1 1 75.5 NA 75.5
...

...
...

...
...

...

5. Calculate the empirical mean of all outcome estimates to get the final
marginal estimate.
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Practice

Let’s practice calculating the parametric g-formula by hand using R!

library(tidyverse)
library(gfoRmula)

# re-create the frequency table for homework 3
hw3_freq <- tribble(

~A_0, ~L_1, ~A_1, ~N, ~Y_1,
0, 0, 0, 6000, 60,
0, 0, 1, 2000, 60,
0, 1, 0, 2000, 210,
0, 1, 1, 6000, 210,
1, 0, 0, 3000, 240,
1, 0, 1, 1000, 240,
1, 1, 0, 3000, 120,
1, 1, 1, 9000, 120

)
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Practice

# expand the frequency table to 1 row per person
# (first just assign everyone the average Y value)
dat <- uncount(hw3_freq, N) %>%

# give those rows an id number
rowid_to_column(var = "id") %>%
# for each of the variables except for id, split it into two
# rows, one for each time point
pivot_longer(-id,

names_to = c(".value", "time"),
names_sep = "_"

) %>%
# make sure that time is read as a number
mutate(time = parse_number(time),

# add some random error to Y
# (nrow(.) means a different value for each row of the dataset in use
Y = Y + rnorm(nrow(.), 0, 10))
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Practice

> dat
# A tibble: 64,000 x 5

id time A L Y
<int> <dbl> <dbl> <dbl> <dbl>

1 1 0 0 NA NA
2 1 1 0 0 67.7
3 2 0 0 NA NA
4 2 1 0 0 65.0
5 3 0 0 NA NA
6 3 1 0 0 59.3
7 4 0 0 NA NA
8 4 1 0 0 62.7
9 5 0 0 NA NA

10 5 1 0 0 44.4
# ... with 63,990 more rows
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Practice

# create lagged variables
t1 <- dat %>%

mutate(lag_A = lag(A)) %>%
filter(time == 1)
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Practice

Try coding the following on your own:

1. fit models for covariate and outcome given past on dat

2. create new data set with space for 10,000 simulated entries

3. fix intervention values in the new data set to be consistent with the regime

4. predict covariate means at time 1

5. simulate covariate values at time 1

6. predict outcome at time 1 based on simulated covariates and fixed
treatments

7. take mean across all simulations to get g-formula estimate!
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Statistical inference

To get standard errors and confidence intervals for our estimates we can use
the bootstrap.

For b = 1, . . . ,B:

1. Draw a sample of size n with replacement from the observed data.

2. Calculate the g-formula estimate ψ̂b in the simulated bootstrap sample.

Use the resulting estimates (ψ̂1, ψ̂2, . . . , ψ̂B) to approximate the sampling
distribution for ψ̂.

SEboot(ψ̂) = sd(ψ̂b)

95%CIboot(ψ̂) =
(
q2.5(ψ̂b), q97.5(ψ̂b)

)
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The gfoRmula package in R

Feeling like the parametric g-formula is a lot of work? Fortunately, there’s a
package for that.
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Practice

Read through the code. Add comments to the lines that start with # to briefly
explain what the line below means. You may want to run ?gformula or read the
paper about the package. Then try running the code.

Questions:

1. How many models were fit?

2. How can you tell which of the data in the sim_data object was simulated or
predicted from a model?

3. Do these results match your answers to the earlier questions, and to
Homework 3? Why or why not?
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